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Abstract-Asymptotic solutions of the equations representing the free vibration of thin shells of
revolution with a first-order turning point are developed. These solutions are uniform and fully
appro",imate, namely satisfy the accuracy of the theory of thin shells.

Three categories of the generalized function are defined, .:r. (h = I. 2, 3, 4), ,J' and ,I, in terms
of which a singular membrane solution and four bending solutions can be e"'pressed, respectively,

In particular, the ~ond category of the generalized function ;if is lirst obtained, which is a
generalization of the new solution of the related equation. This new solution is found from the
modification of the laplace Transform Method,

NOTATION

All the quantities arc dirnensilmless except the characteristic length R, the clastic modulus E ilnd mass density /',
S the lirst principal eoordimlte along the Ilmgitude
R

"
R: the pril1t:ipal radii of curvature

8 lame's coetlicient, which is et[uivalent to the corresponding pamllcl radius
Ir the thickness of the shell
':, IJ the thickness parameter (small paramcter)
/I} fret[lIcncy
n the fret[ueney pilrarncter

Poisson's ratio
m the number of waves along the circumference, which is restricted to not being too hlrge, namely,

m - 0(1)
It, /', II' the tangential, circumferentiitl and normal disphlcement
Z '" <p(s) langer's variable
, .. :IIJ stretch langer's variable
:2'.(C; p), ;A(e p), .I(C; p) the lirst, second and third category of the generalized function, where h = 1,2,3,4;

P = 0, ± I, ±2, ...
: It,,I',, "',l (i = 1,2,3,4) displacement wctors corresponding to the four bending solutions
(u',O', I'~o" ...',o'l the displacement vector corresponding to a singular solution of the membrane system
{pl~n,. ,,\0'. r~1U)} [he regular part of {u~"•• l,~UI. Wl~o)}

(u:o" I':"', II':'''} the displacement vector corresponding to regular solutions of the membrane system, where i = 6
for a",isymmetric vibrations (m = 0) and i = 6, 7,ll for asymmetric vibrations (m ",0)

{u" /'" II',} the displacement vector corresponding to a singular membrane solution whose leading terms
arc: {u"o,. ,,\01. ",1~OI}

[u" I'" II',} the displacement vector corresponding to the regular membrane solutions whose leading terms
are: It:o,, /.:0" I":o'}, where i = 6 for a",isymmetric vibrations (m = 0) and i = 6, 7,K for asymmetric
vibrations (m ", 0)

superscript (0) denotes zero-order or primary appro"'imation.

I. INTRODUCTION

In shell vibrations, there is a turning point whose position depends on the frequency. Ross
(1966) defined the turning point as any point at which the asymptotic approximation to
four bending solutions is singular. Another definition was given by Gol'denveizer (1980)
according to the solvability condition of the membrane system. which is obtained by putting
II -+ 0 in the origimll system of equations. At the turning point. the membrane system has
a singularity. These two definitions are virtually equivalent to each other. The various types
ofvibration with turning points in solid mechanics, including shell vibrations. were discussed
ny'Steele (1976).

1311



The first-order turning point which occurs in shell vibratl,ms is more complicat.:d than
that in other lidds of mechanics. The complex.ity comes largely from the following two
aspects. First. the corresponding rel;.lted equation den\)t;.:d by Langer's variable is of tifth
order. which is much higher. In fact. the OrrSommcrf.:ld equation of hydrodynamic
stability corresponds to a related equation of second-ord<:r. which is the well-known Airy
equation. and the related equation in toroid stn:ngth analysis is at most of thirJ-onh:r.
However. a second more important aspect is that the membrane system is singular at the
turning point. As a result. one of the two (ax.isymmetric vibrations) or four (asymmetric
vibrations) solutions of the membrane system is singular and contains a h)garithmic term
at the turning point since the indicial equation arising frl101 a Forbenius expansion at the
turning point will have repeated roots. Thus. the turning p\1int of the original system is also
the branch point of the singular solution of the membrane system. In this sense. we say that
the turning point in shell vibrations has a singularity at the branch point. The Orr
Sommerfeld equation has a similar nature, where the turning point is also the branch point
of the solutions of the in viscous equation. However. the situation in toroid strength analysis
is ditlcrent. The ditliculty arising from this is in linding a sl)lution to a rdatl'd equation.
that can be used to uniformly describe the singular membrane solution to the high-orda
approximation. Here, tht: singular membrane solution is delint:d as the solution 0'" the
original system whose zero-order approximation is the singular solution of the membrane
system.

Tht: lirst-order turning point in shell vibrations has heen investigated for many years.
R(lsS (1\)66) ohtained matching asymptntic snlutions fpr the axisymmetric vibr;ltions ()I"

shells of revolution. and discussed thc possihility 01' tinding uniform asymptotic rep­
rescntations. l!c focused his attention on the logarithmic lJl\.'mhrane solutiun. I hl\\c\cr, hc
concluded tha t thc loga ritlllnic Illem bra nc solu tion docs 11\It a ppear to pussess a un iform
representatil)f1 in any scnse. In IIJ7 l). Ciol\lcnveizer ('I £1/. publishcd a monograph in Russian
(Ciol'dcnvcizer t'l £1/.• 1979) which was rcally a survey PI' prcvious papcrs in Russian
literature on thc asymptotic solutions of shell vibrations, including our subject. It can bc
seen from this nwnograph that thc ;Illthors tricd without success to uhtain a uniform
represcntation of the singular memhrane solution. altlhlugh progrcss was made in linding
that of the four hcnding solutions.

It is worth mentioning that a category of generalized Airy functions was introduced
by Drazin and Reid (IIJX I), to deal with the inner expansions of the singular inviscous
solution of the OrrSoml1lertdd equation, whose singularity is similar to that of our singular
memhranc solution. However. this generalized Airy function was not reL:ognized as a
solution of the generalized Airy equation which is the generalization of the related equation
of the Orr Sommerldd equation. This recognition is theoretically important. since only
solutions 01' the related equation arc considered to have qualitatively the same behavior as
the solutions of the original equations. and L:an thus he used to cxpress the laller.

In the pn:sent paper, thrt:e categories of the generalized function arc ddined in
terms of whidl a singular membrane solution and four bending solutions can bc expressed.
respectively.

rn particular. the second category of the generalized function is obtained lirst which is
a generalization of the new solution of the related cquation in shell vibrations, and can be
us~d to unifllrmly expand the singular membrane solution. This ne\l/ solution is found by
modifying the Laplace Transform Method, which would prohably provide an clfective
approach to linding the uniform solutions of the equations with the property that their
redu\.'ed equations, obtained by putting the small parameter I: ---+ 0 in the original systcm or
equations. arc singular at the turning point or first order.

, TilE SYSTEi\1 OF EC)U.\TIO:\S

After the substitutions of

and
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U 1(s. cp. t) = u(s) cos mcp sin wt

u~ (s. cp. t) = res) sin mcp sin wl

LlJ(S. cp. t) = w(05) cos mcp sin wt
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for the surface loads X, and the displacements u, in the equations for thin shells of revolution
in terms of displacements. the system of equations representing the free vibration of thin
shells of revolution may be denoted as follows:

(I)

where the ordinary differential operators associated with Sanders' theory of thin shells
(Budiansky and Sanders. 1963) are

Qj={UI.U~.UJ}=[II.L"II'}. 1L=[IL,,]Jd' N=[N,JJd

ILl I = ~r+ ~ d - R,vR; _ (~y _I~-~ (';;y
1+ I' fI/ 3- I' B' fI/

IL , = - -- d - --- --- -
I. 2 /J 2 B 8

1+ I' fI/ 3 - I' /J' fI/
IL'I = - d--• 2 B 2 BB

1- I'. I - I' /J' I - I'
n!! =-2 d. + 2 /J d + 2

fI/(V I)IL'I = - + --. B R1 R!

ILl' = _ (_I~_ +~) II!
.. R, R! B

tIl = - (~I + iJ ~-; -(;-1- + ~J ~;

I d [ dIll' d {(m)~} d {B'dll'}]N JJQj J = - -- - 8 --T + vB '-'.- II' - v8 --- -- ---
8 ds d.l· ds B ds 8 d.I'

I - I' d [ , { d ! II' (m)! B' d II'} ,d (II')]+----- B - ----,- - .- 11'+ -- -- +m' - --
B ds dr B B ds do5 B

+ (1 )m[d { d (II')} 2 8 ' d (no)] (m)![(m)! 8' dw d!W]-v - - m-- - + -m- - - - - 11'- - - -1'-
8 ds do5 8 8 ds 8 8 8 8 ds ds 2

d = djds. () = d( )jds.



Moreover. r~'1 (i = I. 2. 3 :j = I. 2.3: i +j = 6) and the lower-order ditferential terms of f'~ I'
are neglected because they have no contribution to our subject. However, it is possible to

contain the different terms for I"!~'I for the different thin shell theories. For example. every
value of N'l' except f'.". is neglected in the Gol'denveizer operators (Gol'denveizer t!( u/..
1979). The frequency and thickness parameters are

n = pw'R'/£ and Jl' = c~ = h: 12. respectively. (2)

h is clear that the evaluation of natural frequencies and their corresponding modes is.
in facL an eigenvalue problem of eqns ( I ) under an appropriate boundary condition.

When the frequency parameter n is in the frequency interval

eqns (I) have turning points. Actually, as mentioned by Gol'denveizer {'/ (1/. (1979).
eqns ( I) can be rewritten as the following high-order equation including only the normal
displacement 1\':

(
" d

k 1\') ,,' d
k

It'

JI' I tI'I" + I. hds) I.A = 0,
k _ " l .1 k _ " l .1

tI" = I; (4)

where" = 6 for axisymmetric vihratinn. " = Xfor asymmetric vihration. and the codlicient
of the second-order derivative is

Ohviously. for .lny shells of revolution. except cylindrical and spherical shells, his) has zero
roints when n is within the frequency interval (3). The zero roints of ;'(.1') arc defined as
the turning points of the original equations ( I), and the first-order zero roints of his) arc
the first-order turning points of eqns ( I). It is assumed. in this rarer, that only a first-order
turning roint exists.

For a certain frequency parameter n in interval (3). it is rossihle to tind one. and only
one. parallels = s. which satisfies n = R 1 1(.1'.) and divides the middle surface nf the shells
along the longitude into three rarts: ,1'1 ~ .I' < .1'.,1.1'-.1'.1« I and s. < .1'::::; .1'> Here. his)
has positive. zero and negative values, resrectively, and the corresronding solutions ofeqns
(I) have ditli:rent behaviors. Hence. to find the solutions of eqns (I) which are uniformly
valid in the whole interval S (.I'I ~ .I' ~ .1'1) and satisfy the accuracy of the thellry of thin
shells is very dillicult. Actually. so far the uniformly valid solutions have not been found.

J. TilE RELATED EQUATION

It was Langer's idea that the uniformly valid solutions in the whole interval can he
exrressed merely in terms of nonelementary functions that have the same qualitative
behavior as the solutions of the original equations. The nonclement,lry functions are
the integrals of the so-called related equation which can be obtained from the Langer
transformation using eqns (I) or eqn (4).

Introducing the Langer variables =and ~

• 1_ I. I [5 J" r • I I ~ .JJ'~ = JI - = JI (p(.I) = JI 4 '. (h(.I») d.1

and the new derendent variable

(5)
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Fig. 1. Contours L•. (k = O. I... .. 5) in the I·plane.

[
h(Sl]IX

r«( ;11)::::: -. Il'(s)
. IIi,

into eqn (4) and assuming that the solutions of the resulting equation can be expanded as
the following asymptotic series

,
Y(~;II)::::: L II"Y.«().

" 0

we ontain a series of equations as follows:

A,[]).I'o(O = 0

AOy1m =[:x(:)O i + fI(:llro«()

A,[])y!«() = [:x(:)Oi+/;(:)JYtC()+r(:)[])~Yll(O;

where the ditren:nti~t1 operator

(6)

(7)

and :x(:)./I(:) and i'(:) <Ire slowly varying coellkients.
The following equ<ltion is referred to as the related equation corresponding to the

original eqns (/):

Af«() =O. (8)

(9)

the solutions of which arc called rdated functions. It is interesting th~lt operator A is
independent of the geometrkal parameters of the shells. From this it follows that all the
thin shells of revolution have the same related eqn (8) .llld the same related functions which
describe the general characteristic behavior of their free vibration.

4. GENERALIZED RELATED FUNCTIONS

4.1. The first aile! third cate,,!ory of the gef/('rali:cc/ r£'latee!jimctioll
According to the standard Laplace ~lpproachwe readily find the solutions of the related

eqn (8) in integml form

fd~)=:;\ r t'exp{(t-t 5/5}dt (k:::::O.I.::!..... 5).
_Ttl J.

where L.· represents the contours in the complex t-plane. as shown in Fig. I, In addition.
the ditTerentials and integrals ofJ~ can all be expressed by



FK(~;P)='~' ( tP'exp~~t-t~5:dt (k=O.1.2.... ,5l.
_ITl JL,

(10)

where P = O. ± I. ±2, ... and FK • respectively. represent the solutionsj~of the related eqn
(8) when P = - I, and their differentials or integrals when p "= - I.

The first category of the generalized function ;1,,( ~; p) (h = I. 2. 3.4) is defined by a
combination of F~ as follows:

.:1 c = -Fc+FJ

c:l , = i(-F,+F,)

.:lJ = i(F , +F5)+(I-i)Fo,

which are identically real functions for any real value of (.
It is easily verified that .:l" are the solutions of the generalized related equation

(A +p+ I )f'l(~ :{') = 0

and satisfy the following relations

f,,(~;p-5)-~..:l,,(~;p-I)+({,-I)..:l,,(~;p)= n.

(II)

( 12)

( 13)

(14)

The recursion formula (14) shows that for other values of {'. 1,,( ;p) can be expressed as
a linear combination of. for example, ..:l,,(~;0). ..:I;,(~; I), .... ..:l,,(~: 4) with polynomial
codlicien ts.

The asymptotic expressions for I,,(~ :p). when ~ -> ±::r., can be obtained by the
method of steepest descents as follows:

when' < 0

.2"1 (( ;{') -> - rio c' {cos (et + (PI') + Xl'[cos (:x + (P,,) + sin (et + (PI')j}

.2'" 2((; {') -+ r" e' {sin (:x + tpp) - Xp[cos (:x + (PI') - sin (:x + (PI')]}

(..:lJ and I J are useless),

and when ( > 0

where

2'"2((;{') -+ -rp[sin ({)+(PI')-YI' cos (()+ (PI')]

..:I,(, : p) -+ rio e" (I +)'1')

2'"J(( ;{') -+ rl' [cos ({)-lpp)+Yp sin (1J-(PI')]+Fo(~ ;{')

(.2"\ is useless); (15) c
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e5 ::: r[h(S)J1 ~ ds

lIP. l " ~( 'I 'I) ii' + } ~l, 5rp ::: --;=:-.c: tl ,- ~ J
,,' 2n:

CPp::: ~(p+~)rr

/:;
X p == ~O- tl~ ~1<5- t In +1'(1'+4)]

The third category of the generalized related function is defined as

..1«(;1') = FoG :1').
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(IS) J

It is easily verifkd that I (~; 1') also satisfy relations (II H 14) with .:l'" replaced by f. and
have the expressions:

,t(~;p) = 0 (I' ~ 0)

and

lip 1)/'1

-/«(;1') = L
"-0

(-I)"
. • (P' 5n \

S"II~( I' - 511- I)!
(I' > 0); ( 16)

which indicates that ,t(~;I') is a polynomial in (of degress 1'-1. The lirst few of these
polynomials arc

j(CI):::::I.

1«(;3)::::: (!J2!.

1«(;5)::::: (4J4!.

,1«(;2) == (

,1«(;4)::::: ('/3!

,1«(;6)::::: CJ5!-1/5

(17)

Only fllur generalized related functions among Iii (It == 1.1.3.4) and f arc linearly
independent because of the connexion formula

L Fdl') == O.
1.-11

4.2. Tlte seco!ld calef/ory 0/ lite f}c!lcra!i;ed rdaled/imc/ioll
Actually. another c'ltegory of solutions of related eljuation (8) exists. which has the

integral form (9) with the contours LA' replaced by /1, (k = 1.2•...• 5). as shown in Fig. 2.
when the st'llldard Laplace approach is used.

However. these solutions cannot be genemlized in the S.lme manner as.l~ [sec (9) and
(10)). because the integrals (10). with contours LA' replaced by / A' have no significance at
the origin / = 0 when I' > O.

We intend to find a new solution of the related equation (8). For this purpose. the
standard Laplace approach should he modified.

Substituting the following solution



I3IK

inlo cljn (8). gives

R. J. ZH"'<0 and W. lH",<t,

1,

t

--------7It-='-------- 15

Fig. 2. The deserted contours I,. on which the origin I = 0 lies.

/(0 = r cxp {(t}·/,(O dt1

-[t·(.. cxp :(t)lc+ r :(t' -2k+c/(tl')jdt} cxp :(t} dt = O.1
Obviously.j«() is thc solution of eqn (8) when

[/'/"exp {(Ill, = 0

and

(IS -2)v+d(tv)jut = 4>(1).

which is not identically zero as in the standard Laplace approach. but is a single-valued.
analytic function in a simply connected region surrounded by a closed contour C + L. where
L represents an auxiliary contour and satisfics

r(p(t)·cxp {'I} dl = O.1

In our case. we choose

and contour C to be the path in the I-plane which starts at an infinite point

ool\=oo'exp{2(k-I)n:ij5} (k= 1.2....• 5).

encircles the origin once counter-clockwise and returns to its starting point: as well as the
auxiliary contour L to be the circle whose center is at the origin and radius equals R -> 00.

as shown in Fig. 3.



Turning point solutions for thin shell vibrations 1319

In this way. a new solution of the related equation (8) is found as

( 18)

and. in a similar manner. the second category of the generalized related function is defined
as follows:

(I' = o. ± I, ± 2, ... ; k = 1.2..... 5) ;

where the first equals sign is valid because ;jlK«( ;1') is independent of k (see the Appendix).
This generalized function can be used to describe the singular membrane solution, which
was not obtained by Gol'denveizer el al. (1979).

It is not difficult to verify that the second category of the generalized function satisfies
the following relations. which are similar to (11)-( 14).

(A +1'+ I )·);'(Cp) = f(Cp)

AO·.Jf(Cp+ I) = -(1'+ 1)·.Jf(Cp)+f«(:p) ( 19)

O"·.Jf(Cp) = ;.Jf«( :1'-11) (20)

(21)

The recursion formula (21) also shows that ,.Jf(Cp) can be expressed. for dilTerent values
of 1', as a linear combination of. for example, Jt«(: 0), .. .• 91«(; 4) with polynomial co­
ellicients such as ::th and ,f. The asymptotic expressions for 9t«( ;1'), when ( -+ ± 00, are

JI«(: - I) - Jl!n6) - K/5 { I +Jl5 • 1440)46 - 4 + }
JI(CO)- -tl(~<5)·4/5{I+tI5·24W46 4+ ]-

~ 4! 5
9f(~; I) - -In (-Y+ sC + ... ,

-/
",- ....

./
" L" / "" \/ "

/ " \ t
"

/
.... \

"
I " \

\ \
\ \ I
\ '" \ /

\ '" '" \ /
... '\ \ /

" \ /

" \ ./
'- J./.......

\

Fig. 3. Contour C: and auxiliary contour L in the I-plane.

~"s ;!1:10-11



where ;' = 0.57721566-+9 ... is Euler's constant and J has already been given in formula
(15 ).

Four of the first and third categories of the generalized function. and the second
category are independent. which constitute the five basic solutions of the related equation
(8) when I' equals - I.

5, THE GE:--';ERAL EXp·\7'Slm; OF THE SOLl'TI07'S OF THE ORIGI7'r\L EQUATIONS

17' TERMS OF THREE CATEGORIES OF THE GE:--';ERALIZED FUNCTION

As shown in the previous sections. we found the solutions ofeqns (7):. (7),.... step
by step. The procedure is actually equivalent to the expansion of the solutions in terms of
the generalized functions.

5.1. Expansion or (he singular memhrane suilition
As can bc seen from expression (18)..fil«( ;{') contains a factor. In t. which characterizes

the singularity of the singular membrane solution at the turning point. Thus. the singular
membrane solution can be expanded in terms of ,;s'(; :{').

Letting {' = - I in formula (20). recalling formula (16) 1 and comparing the result with
eqn (7),. we conclude that

Suhstituting (22) into eqn (7), and recalling the ditferential relation CO), we obtain

If I' = ._) and 0 in eqn (19). respectively. and recalling eqn (H,),. we immediately obtain
the particular integrals of the inhomogeneous equ;ltion (2.1) as follows:

If{' = I in eqn (21). the ahove result can finally he rewritten as

(24)

Introducing .1';," and .lV' into eqn (7h and solving the equation oht;lined in the same
way as ahove. we also obtain

Inserting .1'\,". /1'" yi" . ... in expansion (6) means the singular membrane solution can
be expressed as:

.I,{;' = r,,(.:),;.f((:O)+Jlrd.:)·fil(;: 1)+/I'r,(.:).;;'«(:2)+"· +/I(},{.:)!«(: I)

+/I'(},(.:t!«(:2)+ .... (25)

However. as mentioned earlier. for p ?: 5, :?J«( :1') and '/«(;1') can he expressed as
a linear comhination of ;!!«(;O), .... t!!«(;4) and ,/«(: 1), ... ,,/«(;4), respectively. Thus,
formula (25) is rewritten as

~ 1

1"'<1 = L jl"TCI'(':;/I).;;'(;:p)+jl L jt"XI'(.::/tll«(:p+I).
r~(l p~n

where the second summation term can be simplied using expressions (5) and (17) as
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~

L tt"Xp(:;J1.)f(~:p+ 1) = <P(::~I),
p~(J
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which is the slowly varying analytic function representing the regular part of the singular
membrane solution. Thus, the singular membrane solution can finally be expressed in terms
of the second category of the generalized function as follows:

~

yl5l = 11¢(:; II) + L Ihrp(:; 11}·;I(~ : p),
p=u

where the slowly varying coefficients possess the following asymptotic expansions

1t,,(::II ) = 1t~0)(:)+1151t~1.(:)+ .

¢(::11) = ¢lln(:)+/1 5¢1/l(:)+ .

(26)

(27)

5.2. Expal/sion (Il til" j(wr bCl/dillg solutions
In the same way as in Section 5.1, the four bending solutions can finally be expressed

as:

~

r lln = L IIPrr.I'(::/t}I,,(~:!,) (II = 1.2,3,4),
p~(J

(2R)

when: the slowly varying coel1icients an: given in terms of the same notation, It,.(:: II), as
in expression (27), because hoth satisfy the same dillcrential equations.

6. DETERMtNATION 01' TilE SI.OWLY V,\RYING COEFFICIENTS

Once the general e.xpansions ;lre known, linding tht.: solulions of tht.: original eqns (I)

ht.:wme lhe dt.:lt.:rmination of tht.: slowly varying codlicienls in lheir expansions. Because of
the n:strit.:lion of lht.: at.:curacy of the lheory of thin shdls. delerrnina lion of lhe primary
tt.:rm in the asymplotk expansions (26), (2H) and (27) is suflicienl.

6.1. n/{, sinf/ular f1I"f1Ihrmu: solution
Fromtht.: gt.:nt.:ral expansion (26), tht.: singular mt.:mhrane solulion oft.:qns (I) is assumed

to he

IId(: p) = wI> I (.~)+:x I·;I(~: 0)+ 11//1.11«(: 1)+ JI~h1l((:2)+ p \i 1.11((: 3) + p4(},.1I«(: 4)

/' ;«(: p) = wll ~ (s) +:x ~.11«(: 0) +Jill ,.;1«( : 1)+ JI~/ ~.jf«( : 2) +JI'ci ~.jf«( : 3)+ 11~(}~.jf(( : 4)

II'5«(: It) = WPI(S) + :x 1..11«( ; 0) + Jl/J 1.31«(: I) + JI 1Yl.JI«(; 2) + III (i 1.11«(: J) + JI~()l.1I«(; 4)

(29)

where the slowly varying coeflicients (PI' ;("/1,, i', and (), (i = I. 2, 3) arc all functions or the
original variahle s.

Substituting (29) into eqns (I), equating the coeflicients or ..1I(~;p) (p = 0, ± I, ±2)
and constant terms at both sides to each other, we obtain IXordinary differential equations
and 18 slowly varying coetlicients as unknown. Solving the equations ror these coellicients
yields

(30)

where Do is a constant that remains to be determined later.



It is not necessary to find the other 15 slowly varying coefficients. If we re-expand the
singular membrane solution in terms of .ft'(; :p) (p = - 3. - 2. - I. O. I) instead of .ft'(; : p)

(p = o. ± I. ±2) as before. and note that the terms containing .:A'(;:p) (p = -3. -2. -I)

are small quantities of higher order than the error in the theory of thin shells. we obtain

U 5 = /l ( rjJ, + <Pi', + ~ <P ~ e5, + H<P 30 ,)+ /l.:A' (;: 1)( fJ I + <Pi', + ~ <P ~ e5 I + ~!p )IJ I )

r 5 = J.I( rjJ ~ + <Pi' ~ +1<P ~ I): + H!p' 0:l + J.I.A( ~ : I)( IJ ~ + <Pi' ~ + !<P ~ e5 ~ + ~(p) {}:l

(31)

which indicates that the 18 slowly varying coefficients. except 'X,. 'X: and 'X" appear only as
six different combinations. Through a lengthy and skillful calculation. it is possible to verify
that the combinations {l, + !Pi', + !(P ~I), + ~(P'O, (i = 1.2.3) satisfy the membrane equations.
On the other hand. as can be seen. the combinations are analytic. Thus. between the
combinations and the three regular membrane solutions. the following relations exist

{I ~ + (Pi': + ~<p:(): + ,~If' 'II: = E, I'\,O} + £~I'~O) + E,I'~O}

{I, + <f'i' ,+ ~<f':I), + J,<P 'II, = /;',II'~,'" + E:II,I]OI + E,II·~OI: (32)

wherc I:',. I:': and 1:', arc constants that should he determined.
We introduce the notation tIl denote the other three comhinations of coellicients as

follows:

It can also he verificd that the three comhinations satisfy the melllhrane equations in such

a manner that

(

PI - (E,II',,'" + E~I/'i)1 + E,I/',ol) In If'

: IL + (I -I'~ )na} Q, - (E,I",,"J + E:I"i" + E)l",ol) In Ip

R, - (I:", II""OJ + E~II";'" + E ,II'~"') In If' - '1., Ip

On the other hand. due to the singularity of the column vector at (f' = 0 we immediately
conclude that the column vcctor must contain a component of the singular membrane
solution (//t'. r<,ol. 11",(1). and have the general form

P, - (EII/~:I' + E://7'" + £,I/I,'") In (P = FI/','" + G ,lI~:" + G:///'1+ G ,lIl,OI

Q5 - (E Ir~'" + E:/,';IJ + £ ,r',OI) In Ip = FL,I,"I + G ,I'~"I + G :1"7") + G ,I'~,")

R , - (£III'~,O) + £:11.17°) + £)II'~'O) In Ip -'X.,IP I = FII'(sO) +G, \I"~,O) + G:IIS I
) + G,I\1'~O); (34)

where F. G ,. G ~ and G, are the constants to be determined,
Substituting formulae (32). (33) and (34) into eqns (3 I). we ohtain

F= J.I '

Thus. eqns (34) can he rewritten as



Turning point solutions for thin shell vibrations 1323

dsll) = /.lP s- /.l(G 1+ E I In cp)u~)) - /.l(G~ + E~ In rp)U\Ol_ /.l(G) + E) In rp)U~OI

rlSOI = /.lQs - /.l(G 1 + E1 In rp)t,~01 - /.l(G~ + E~ In rp)l,~01_ /.l(G) + E) In rp)t,IMOI

w~IJ' = /.lR; - /.l(G 1+ E1 In rp)W~OI- /.l(G z+ E~ In rp)W~IJI_ /.l(G] + E) In rp)W~Ol_ WXJrp- I,

(35)

Equations (35) should be valid at the turning point due to their uniform validity.
Namely. provided we expand eqns (35) asymptotically at rp = O. the result should coincide
with the singular solution of the membrane equation in the power series at the neigh­
bourhood of the turning point s = s.; which is shown as:

ds
lJ

' = p~OI(s)+u~olln 15-s.1

r lsOl = qlsOI(s)+l'~Olln Is-s.'

W~OI = r~0l(5) + 1l'~11 In 15-s.' + (S-5.)- I.

Finally. we obtain

and

which appear in formula (30).
Thus. the singuklr membrane solution (31) is Iinally found as

u)(~; II) = pISIll(S) - ;;t«(; I )u~"(S)

I's(~ ;11) = ,N'(s)-dt'(C 1)1,~H(s)

ws«(;II) = r\"I(s)_,jf(C l)w\:"(s)+xl(s)J'«(;O).

where

) I[' 1\ '[ '( I I" [ 8(s) ] ' I, l
:Xl(.~ = -II' (p (s.) - (p .1') - R(s.)

(36)

6.:2. The jOllr hending so/utions
According to the general expansion (24), the bending solutions can bc assumed as

u,,('; II) = :x I (S)1'h('; 0) + Ilff 1(s)2",,(~; I) + .,.

r,,(~;/I) = (x~(5).f,,«(;0)+/l/;~(.\').f'1«(; 1)+//2"2(5)1,,«(;2)+ ...

11',,«(;/1) = X,(5)$'h«(;0)+ ... (h = 1,2,3,4). (37)

Only the coefficients in the tcrms shown should bc found, due to the limitation of the
accuracy of the linear theory of thin shells.

Substituting formula (37) into eqns (I), and equating the coefficients of .!th«(; p) at
both sides to each other, gave 15 ordinary differential equations and 15 slowly varying
coefficients XI' (J " ..• as the unknowns, which arc the same as the equations in the previous
section (6.1). From these equations. it is easy to obtain



:xds) = C,,[8(s)J' I 2[<,.~'(S)J' ~

fJ I (.I) = - C{~I- + ~J [8(s)J I 2[,p'(S)J '2

where CII is a constant.
By using the uniform validity of solutions (37). i.e. in both the subintervals .1'1 ~ 5", and

Sc ~ .1'", which arc far away from the turning point .1'",. these solutions should be identically
equal to those which are valid only in the two subintervals. respectively. (The latter two
solutions correspond to the cases of low frequency and high frequency. respectively. as
mentioned by Zhang. 19~~). The constant Cil is determined as
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Sl",el.:. t'. R. (1'176). Apphl:alion of Ih", WI( n lII",i'lOd in s"lid 1II':l:hanlCs. In ,Hedlllflll'.' Todav (I'dit",d hy S,
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Chin",,,). Ph.l>. Tll<:sls. T,in~hua UIll,<:rsity (BeiJingl.

A (. .·'.''''111rlofic rel'rCS('tJlafio//s or f h (:: P>
W'" ,1;lrl from (101 ;Intl lind the n:presenl;lluH]S of FAI~ :/'1;1' ~ ~ i I in advalll.;".
II i, nlll dillielllt III ohlain tll"ir four 'addle pOlnls in tIl<: '-plan.: a, f"ll"ws:

I",,, ~I -ll..:'''' I I~' : (11/ I. 2,1. ..j I, ( ..\ I)

amllh", ,I",,,p..:st t!esl:ent path, as shown in Fig. A I. The int",grals with th", st",ep"st descenl paths as th",ir contollr-;
of inlq.:r;ltion hav", th" following a'ymplotk r"pr",,,nlalions:

1,\2)

1m I. 2. 3.4: /' ~ O. .t l. i 2.. l..

wll",r.:

Th", lirst tw,> I",rms of C',J;' ar",

d"
Cr.' ~ ds" :(1 +.1') 1'11 ..... s+

I ~J.. • ! ~ I t
II.,., H'
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Fig. A I. Four saddle points and the stt-epest descent paths in the t-plane.

9
C{' =4 +1'(1'+4)

t

c,
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(A3)

and the remainder arc not used since the addends they appear in [st."t: elln (1\::)1 arc f,cyond the ;lCcuracy of the
thel'rv of thin shells.

The contours of integration ,IS given in (IO) C;1l1 f,c deformcd in!;' the sk-cpest descent paths. Then F,(::; :1')
;IS::; - + f. ;lfe denoted. in terms of </'...(p).;lS

'f' ~
-,~,

t~.

tPI -l('1>~ +</'.·-./}

-</"
'I>! + l( II>, +11>. -./}

-(tp,+'PI)
tPI + l(tp, +,P. -.f)

-rP.

(1\4)

(A5)

where! '" ,;/(::; ;(') is the third generalized related function as ddined before.
Clt:arly the values of I".... <P,. and f~ arc probably all compleK although the variable::; is real. To dn:umvent

this disadvantage. the first generalized related function .:T.(Cp} (II = I, 2. 3.4) is dclined as the fUllowing cum­
binations uf F,{::; ;p)({; '" I. 2..... 5):

.:T I = -iF,

.:T, = - F~ +F•

.:T, = i( -F, +F,)

.:r. = i(F, +F,)+(I-il/, (M)

Thus. after some manipul;ltion. the asymptotic representations of .:r.<e ;1') as::; - ±'fJ arc fin;llly found [as
gi\'en in eqns (15)1.

A2. Rcprt'.H'ntulimt.< 0( 1(::;; p)

It can be seen from the definition of f(::; ;1') that f(C ;1') =0 if I' .;:; 0; otherwise it is a polynomial in ::; of
degree 1'-1 which. by the residue theorem. is the coctlicient of I" 'in the c:otpansion of e:otp l::;t - ;I'}. Thc first
few of thesc polynomials are given in eqn (17).
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Fig. A2. Contours of r:(~ ;1') and f~(::' ;1') (n ~ I. 2..... 5).

A3. AJlmplf/I;C rl'pfl's('nlal;ons of.JI(::'; pj

First we consider. for unrestm:ted (comple,) values of 1'. the following integrals

(k I. 2..... 5). (A7)

We ohserve that f,(, ;fl) is independent of the values of k. In fact. fi>r any value of k
conne,ion formula

f,(,:I') " ~ F.,(':I') (k = 1.2.. 5)exists.
,_ I

1.2..... 5. the

The pattern for k = 2 is sket.:!led in Fig. A2. Thus. 10 emph;lsize this Illdependence. suhscript k will he ol11mitlcd
Using a formula given hy Erdclyi ,'I af. (1'15.1, p. 14), we ohlain

. ( - I)"
r(, :1') - ~ ",. ," '" (pEL).,,_,,511.1«(1-511)

If I' is ;In integer. it is interesting «l note that

r(C :1') '" /(, ;1') (p ~ o. ± l. 1: 2... j.

(AX)

(A'I)

Thus. if pis an intcger. we conclude that ./ (,.1') '" 0 for ;1111' ~ (). otherwise the series in (AX) tcrnunatcs. and

,,_(J

lip 11'1 (- I)'
./(CI') = L .'-~---'- e

5"n'( I' - 5n - I)'
,,.-1

(1'= U .. j.

which isjust formula (16).
Differentiation of (A7) with respeci to I' (pEe) gives the second generalized related function .:If(';p) '"

011.(::' ;1'). as ddined before. Obversely. 31(::' :1') is also independent of k. Thus, by differentiating both sides of
(AX) and letting I' take an integer value again, the asymptotic representations of .:If(::':I') can be found. when
::. - ± x, as follows:

and

, .. I (1'=0.-1.-2.... )

(p = I. 2., .j;

where i' = 0.5772156649 ... is Euler's constant.
Only $(:::: - I) . .:If(:::: 0) and .JI('; I) arc useful in our subject, and their ;lsymptolic representations have been

given in Section 3.


