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Abstract—Asymptotic solutions of the equations representing the free vibration of thin shells of
revolution with a first-order turning point are developed. These solutions are uniform and fully
approximate, namely satisfy the accuracy of the theory of thin shells.

Three categories of the generalized function are defined, 7, (h = 1, 2, 3,4), # and £, in terms
of which a singular membrane solution and four bending solutions can be expressed, respectively.

In particular, the second catcgory of the generalized function # is first obtained, which is a
generalization of the new solution of the related equation. This new solution is found from the
modilication of the Laplace Transform Mcthod.

NOTATION
All the quantities are dimensionless except the characteristic length R, the elastic modulus £ and mass density p.
S the first principal coordinate along the longitude
R\ R, the principal radii of curvature
8 Lame’s coeflicient, which is equivalent to the corresponding parallel radius
h the thickness of the shell
£op the thickness parameter (small parameter)
@ frequency
9] the frequency parameter
v Poisson’s ratio
m the number of waves along the circumference, which is restricted to not being too large, namely,
m~0(l) )
H,or,ow the tangential, circumferential und normal displacement
Z = ¢(s) Langer's variable
{=z/u stretch Langer’s variable

ZCip) #ip). S(Lip) the first, second and third category of the generalized function, where £ = 1,2,3,4;
p=0,%1%£2,...

tu e ow, ) (0= 1,2,3,4)  displacement vectors corresponding to the four bending solutions

(" 0™ Wi the displacement vector corresponding to a singulir solution of the membranc system

(P g™ ") the regulae part of {ul”, 04", wi®}

[, e, Wi the displacement vector corresponding to regular solutions of the membrane system, where i = 6
for axisymmetric vibrations (m = 0) and { = 6, 7, 8 for asymmetric vibrations (m # 0)
lus, vy, n) the displacement vector corresponding to a singular membrane solution whose leading terms
ur.[ (B 10) (0N
C L Uy Wy
lu, v,om} the displacement vector corresponding to the regular membrane solutions whose leading terms

are Luf™, o!™ w!®}, where i = 6 for axisymmetric vibrations (m = 0)and i = 6,7, 8 for asymmetric

vibrations (rm # 0)
superscript (0) denotes zero-order or primary approximation,

1. INTRODUCTION

In shell vibrations, there is a turning point whose position depends on the frequency. Ross
(1966) defined the turning point as any point at which the asymptotic approximation to
four bending solutions is singular. Another definition was given by Gol'denveizer (1980)
according to the solvability condition of the membrane system, which is obtained by putting
h — 0 in the original system of equations. At the turning point, the membrane system has
a singularity. These two definitions are virtually equivalent to each other. The various types
of vibration with turning points in solid mechanics, including shell vibrations, were discussed
by Steele (1976).
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The first-order turning point which occurs in shell vibrations is more complicated than
that in other fields of mechanics. The complexity comes lurgely from the following two
aspects. First, the corresponding related equation denoted by Langer’s variable is of fifth
order. which is much higher. In fact. the Orr-Sommerfeld equation of hydrodynamic
stability corresponds to a related equation of second-order. which is the well-known Airy
equation. and the related equation in toroid strength analysis is at most of third-order.
However. a second more important aspect is that the membrane system is singular at the
turning point. As a result. one of the two (axisvmmetric vibrations) or four {asvmmetric
vibrations) solutions of the membrane system is singular and contains a logarithmic term
at the turning point since the indicial equation arising from a Forbenius expansion at the
turning point will have repeated roots. Thus. the turning point of the original system is also
the branch point of the singular solution of the membrane svstem. In this sense, we say that
the turning point in shell vibrations has a singularity at the branch point. The Orr-
Sommerfeld equation has a similar nature, where the turning point ts also the branch point
of the solutions of the inviscous equation. However, the situation in toroid strength analysis
1s ditferent. The dithiculty arising from this is in finding a solution to a related cquation,
that can be used to uniformly describe the singular membrane solution to the high-order
approximation. Here, the singular membrane solution is defined as the solution ol the
original system whose zero-order approximation is the singular solution of the membrane
systen.

The first-order turning point in shell vibrations has been tnvestigated for many years.
Ross (1966) obtained matching asymptotic solutions tfor the axisymmetric vibrations of
shells of revolution, and discussed the possibility o finding untform asymptotic rep-
resentations. He focused his attention on the logarithmic membranc solution. However, he
concluded that the logarithmic membrane solution does not appear to possess a untform
representation inany sense. In 1979, Gol'denveizer ef of. published a monograph in Russian
(Gol'denveizer er af.. 1979) which was really a survey of previous papers i Russtan
literature on the asymptotic solutions of shell vibrations, including our subject. It can be
seen from this monograph that the authors tricd without success to obtain a untform
representation of the singulir membrane solution, although progress was made in finding
that of the tour bending solutions.

It is worth mentioning that a category of generalized Airy functions was introduced
by Drazin and Reid (1981), to deal with the inner expansions of the singular mviscous
solution of the Orr -Sommerteld equation, whose singularity is similar to that of our singular
membrane solution, However, this generalized Alry function was not recognized as o
solution of the generalized Atry equation which is the generalization of the reluted equation
of the Orr Sommerfeld equation. This recognition is theoretically important, since only
solutions of the related equation are considered to have qualitatively the same behavior as
the solutions of the original cquations, und can thus be used to cxpress the latter.

In the present paper. three categories of the generalized function are defined 1n
terms of which a singular membrane solution and four bending solutions can be expressed,
respectively.

In particular, the sccond category of the generalized function is obtained first which is
a generalization of the new solution of the refated equation in shell vibrations, and can be
used to uniformly expand the singulur membrane solution. This new solution is found by
modifying the Laplace Transtorm Method, which would probably provide an effective
approach to finding the uniform solutions of the equations with the property that thetr
reduced equations, obtained by putting the small parameter @ — 0 in the original system of
equations, are singular at the turning point of first order.

2O THE SYSTEM OF EQUATIONS
After the substitutions of

. ¢
X, = =2hp ‘{-'

and
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u,(s.@.t) = u(s) cos me sin w!
u-(s, @, t) = v(s) sin m sin wt
us(s. . t) = w(s) cos me sin wt
for the surface loads X, and the displacements i, in the equations for thin shells of revolution

in terms of displacements. the system of equations representing the free vibration of thin
shells of revolution may be denoted as follows:

(L+4°N)U = —(1 —v)QU; (1

where the ordinary differential operators associated with Sanders’ theory of thin shells
(Budiansky and Sanders, 1963) are

U={U|.U:.U}}={ll,l’.W}, [L=”‘l/].1x3* N=[N”']3x3

, B v BY 1—v{m¥
Lo,=d’+ ~d— o o= =) =2
nEEt BT RR, (B) 3 (B)

| 4+vm 3—v Bm

2 B 2 BB

1 v Bl I 1y
o= (4 7)o e ) +<7e7)

l+vm I—~v B m
2 B 2 BB

l=v . [~vH l—v | l=v (BN [V
ﬂ"="’ d-+ y N d - - ° - T2 . - N
2= 2 8%t 2 R, T2 <B) (3)

L.

=
I
|

Lo = v+l m
WU UAR, "R,/ B

Lo = <l +Av> ,l <v + I) |
T A\R TR R \R, TR RS

N”=_. d‘+

1 d d'w d {/m¥ d |B dw
N == | = B S (AR IV SUURY Tl Gt
»Us de[ By +vBy; {(3) “} B & J

m[d d (w B d{w m\V| (m\V B dw dw
l=v) = | —<m—| = —m—{ =) =(= w2
H=vg [ds {’"ds (B)} *2E" s (3)} (B) [(3) "“Ba ds’]

d=d/ds. ()=d()/ds.
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- .

Moreover, N, (i = 1.2.3: = 1.2.3: i+ = 6) and the lower-order differential terms of s
are neglected because they have no contribution to our subject. However, it is possible to
contain the different terms for N, for the different thin shell theories. For example, every
value of N, . except N, is neglected in the Gol'denveizer operators (Gol'denveizer et ul..
1979). The frequency and thickness parameters are

Q=pw'RYE and g =¢' = h* 12, respectively. (2)

[t is clear that the evaluation of natural frequencies and their corresponding modes is.
in fact. an eigenvalue problem of eqns (1) under an appropriate boundary condition.
When the frequency parameter Q is in the frequency interval

min [ R, *(5)} < Q < max 'R, s (5, <5 <50 (3

eqns (1) have turning points. Actually. as mentioned by Gol'denveizer ¢t af. (1979),
eqns (1) can be rewritten as the following high-order equation including only the normal
displacement w:

e

Y0 d =1 (4)
.

of - dFw " ¢
ol ) da + Z hi(s) A

k ]
S dy o d.

where n = 6 for axisymmetric vibration, n = § for asymmetric vibration, and the cocflicient
of the sccond-order derivative is

ho(s) = bls) = —(1 =v7)[Q - R, ()]

Obviously, for any shells of revolution, except eylindrical and spherical shells, A(s) has zero
points when Q is within the frequency interval (3). The zero points of b(s) are defined as
the turning points of the original equations (1), and the first-order zero points of h(s) arce
the first-order turning points of eqns (1). [Uis assumed, in this paper, that only a first-order
turning point exists.

For a certain frequency parameter Q ininterval (3), 1t is possible to find one, and only
one, parallel s = s, which satisfies Q = R, *(s,) and divides the middle surface of the shells
along the longitude into three parts: s, <5 <5, [s—s, J <« Land s, <5 <5, Here, A(y)
has positive, zero and negative values, respectively, and the corresponding solutions of egns
(1) have different behaviors. Hence, to find the solutions of eqns (1) which are unitormly
valid in the whole interval S (s, € 5 < s3) and satisfy the accuracy of the theory of thin
shells is very ditlicult. Actually, so fur the uniformly valid solutions have not been found.

3. THE RELATED EQUATION
It was Langer's idea that the uniformly valid solutions in the whole interval can be
expressed merely in terms of noneclementary functions that have the same quakitative
behavior as the solutions of the original equations. The nonclementary functions are
the integrals of the so-called related equation which can be obtained from the Langer
transformation using eqns (1) or eqn (4).
Introducing the Langer variables - and

J=u z=u ‘os)y=pn " [4 J this)y' d.\} (5)

and the new dependent variable
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Fig. I. Contours L (k = 0.1,....5) in the t-plane.

G
W :m=[——@] w(s)
e

into cqn (4) and assuming that the solutions of the resulting equation can be expanded as
the following asymptotic serics

Y=Y 1. (6)

=8
we obtain a series of equations as follows:
ADyy() =0
ADy Q) = [2(9D + BE)D(S)

ADy () = [2(2)B + I UO) + 7D (D )
where the differential operator
d
A=D"-(D-2 D=
dg

and 2(z). f(z) and +(2) are stowly varying coetlicients.
The following equation is referred to as the related equation corresponding to the
original eqns (1):

Af(() =0, ®)

the solutions of which are called related functions. It is interesting that operator A is
independent of the geometrical parameters of the shells. From this it follows that all the
thin shells of revolution have the same related eqn (8) and the same related functions which
describe the general characteristic behavior of their free vibration.

4. GENERALIZED RELATED FUNCTIONS

4.1. The first and third category of the generalized related function
According to the standard Laplace approach we readily find the solutions of the related
eqn (8) in integral form

{
Ly = ;m,j trexp {Ce—05tde (k=0,1,2.....5). 9
=T g,

where Ly represents the contours in the complex ¢-plane, as shown in Fig. |. In addition,
the differentials and integrals of fx can all be expressed by



1316 R. J. ZHanG and W ZHaNG

| .
FK(;;p)=;-n—ij t7Peexp t— 5 dr (A=0.1.2.....3), (10)

L

where p = 0. =1, £2, ... and Fy. respectively, represent the solutions f; of the related eqn
(8) when p = — 1, and their differentials or integrals when p = — 1.
The first category of the generalized function 2, (J:p)(h = 1,2.3,4) is defined by a

combination of F, as follows:

J '[ = “‘IF\

= —F.,+F,

Yy=0(—F +F;)

v .4 = i(Fl +F5)+(l ‘i)F(J-

which are identically real functions for any real value of {.
It is easily verified that #, are the solutions of the generalized related cquation

(A+p+ D7 (=0 ()

and satisfy the following relations

ADZ(Cip+ly= —(p+D)Z(Em (12)
D2 p)= S ip—n) (13)
Zlip=3) =S Cip= )+ (p-DZu(Ggp) = 0. (13)

The recursion formula (14) shows that for other values of p, 7,(J: p) can be expressed as
a lincar combination of, for example, 2,(5:0), Zu(<: ... ., 2 4) with polynonual
cocllicients.
The asymptotic expressions for 27,(0:p), when { — + o, can be obtained by the

method of steepest descents as follows :
when ¢ < O

2(Cip) = —r, ¢ {cos (x+¢,) + [cos (x+¢,) +5sin (2+ ¢}

ZA(Cip) = 1, sin (x+@,) —x,[c08 (x+9,) =sin (x+¢,)]}

(25 and .7, are uscless), (15),

and when{ >0
XATip) = —rp[sin (@+@,)— 1, cOS (04+p,)]
2NEipy =, " (1 +1)
ZCip) =, [cos (0= )+ 1y, sin (0 =@+ Fo(l1p)
(<, is uscless) (15):
where
2
a~ X T

0~ p s
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J = j )] ds
1

: 1y e 3 S
"n‘““?;f!l“’”'”(fft)l) =2
V-

Wp+in

il

@y

el
%= St o +p(p+ ]

-
fi

Yp=Tap’ 0T G +p(p+4)]. (15),

The third category of the generalized related function is defined as
j(;:[’) = Fn(‘::[’).

It is easily verified that g (J: p) also satisty relations (1 1)-(14) with .2, replaced by 7, and
have the expressions:

JEp=0 (pgs®
and

ltr US| (-l)"

(L) = S e s .
FEN= L Gup—sn— i (P> (16)

which indicates that #(C;p) is a polynomial in { of degress p—~1. The lirst few of these
polynomials are

A =1, H:=¢
S =2 A4 = Y3
SIS =044 6y =S —-1/S
an

Only four generalized related functions among 2, (A= 1,2,3.4) and # are linearly
independent because of the connexion formula

A
Y. Felp) =0,
A-8

4.2, The second category of the generalized related function

Actually, another category of solutions of related equation (8) exists, which has the
integral form (9) with the contours L replaced by [, (k= 1,2,...,5), as shown in Fig, 2,
when the stundacd Laplace approach is used.

However, these solutions cannot be gencralized in the same manner as /i [see (9) and
(IM]. because the integrals (10). with contours Ly replaced by /.. have no significance at
the origin t = O when p > 0.

We intend to find a new solution of the related equation (8). For this purpose, the
standard Laplace approach should be modificd.

Substituting the following solution
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I,

1,

I

Fig. 2. The deserted contours /4. on which the origin ¢ = 0 lies.

£ =J exp {{t)e(e) de
B
into cqn (8), gives

—[r-voexp (i) + J 1" =20 +d(re)/de} exp (o) de = 0.

(
Obviously, f{) is the solution of egn (8) when
{trveexp{l]. =0
and

(15 =2)v+d(tey/de

p(1).

which is not identically zero as in the standard Laplace approach, but is a single-valued,
analytic function in a simply connected region surrounded by a closed contour C+ L, where

L represents an auxiliary contour and satisfies
f d(1)exp {{e} de = 0.
1

In our case, we choose
(1) = 1-exp {~1'/5]
and contour C to be the path in the r-plane which starts at an infinite point

oy = wrexp {2(k—Nri/S} (k=1,2,...,3),

encircles the origin once counter-clockwise and returns to its starting point; as well as the
auxihary contour L to be the circle whose center is at the origin and radius equals R — co,

as shown in Fig. 3.
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In this way, a new solution of the related equation (8) is found as

(0, )

fx(C)=;:;iJ t*Int-exp((t—1%/5)dt (k=1.2,....5) (18)

xx

and. in a similar manner, the second category of the generalized related function is defined
as follows:

(0,)

R(:p) = RCip) = ’_75_[ 7" Ins-exp ({t—17/5} dt

Ly

where the first equals sign is valid because #,((: p) is independent of k (see the Appendix).
This generalized function can be used to describe the singular membrane solution. which
was not obtained by Gol'denveizer et al. (1979).

It is not difficult to verify that the second category of the generalized function satisfies
the following relations, which are similar to (11)-(14),

A+p+DAC:p) = 7P

ADAQC.p+1) = —(p+ DA P+ F(:p) (19
D" A p) =R p—n) 20)
A p=5)=CAC p=D+(p—D)AC:p) = J(:p). 2h

The recursion formula (21) also shows that (L : p) can be expressed, for different values
of p, as a lincar combination of, for example, #({:0),...,9((;4) with polynomial co-
cfficients such as 2, and #. The asymptotic expressions for #(( ; p), when { » + o0, are

R = 1) ~ G0 {1+ 144(d) ' 4 -
%(C.O) ~ —“(3(5)~4/5{l+”5.24(~;)40‘——4+ }

4!
A1)~ ~-Inl-y+ gC“’+---,

~ e
~+- "

Fig. 3. Contour C, and auxiliary contour L in the (-plane.

SAS 21:10-n
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where ; = 0.3772156649 ... is Euler’s constant and 0 has already been given in formula
(15).

Four of the first and third categories of the generalized function, and the second
category are independent. which constitute the five basic solutions of the related equation
(8) when p equals 1.

5. THE GENERAL EXPANSION OF THE SOLUTIONS OF THE ORIGINAL EQUATIONS
IN TERMS OF THREE CATEGORIES OF THE GENERALIZED FUNCTION

As shown in the previous sections. we found the solutions of eqns (7). (7)..... step
by step. The procedure 1s actually equivalent to the expunsion of the solutions in terms of
the generalized functions.

5.1, Expansion of the singular membrane solution

As can be seen from expression (18). .#(¢ ; p) contains a factor, In ¢, which characterizes
the singularity of the singular membrane solution at the turning point. Thus, the singular
membrane solution can be expanded in terms of .2(] 1 p).

Letting p = — | in formula (20), recalling formula (16), and comparing the result with
egn {7}, we conclude that

W= (0). (22

Substituting (22) into eygn (7), and recalling the differential relation (20), we obtain

ADY = 2 2) (0 =S+ PR 0 2%
Wy = ~5and 0incgn (19), respectively, and recalling eqn (16}, we immediately obtain

the particular integrals of the inhomogencous equation (23) as follows:
W= @A = H (A,
Ifp = 1 ineqn (21), the above result can finally be rewritten as
Y= @A) (A D+ A (D, (24)

Introducing v, and 4% into eqn (7), and solving the equation obtained in the same
way as above, we also obtain

W = 3, 0+, D H0 (A D) 00 S D+ A D)

Inserting 147, 34", 4", ... in expansion (6) means the singular membranc solution can
be expressed as:
P = (DO F pn (DA DA D+ Fa (9 A D
+ 0D I (C2+ L (29)
However, as mentioned earlier, for p = 5, #(J:p) and _#({:p) can be expressed as

a linecar combination of A#(J;0)..... A2 :H and £ 1)..... F(£:4), respectively. Thus,
formula (25) is rewritten as

4 4
U= Y ) A p e Y WA (E A Sp L
H

p=0 p

where the second summation term can be simplied using expressions (5 and (17) as
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4
Y WA Cip+ ) = o),
p=0
which is the slowly varying analytic function representing the regular part of the singular
membrane solution. Thus. the singular membrane solution can finally be expressed in terms
of the second category of the generalized function as follows:

4

VO = pdi+ Y W (AL p). (26)

p=0

where the slowly varying coeflicients possess the following asymptotic expansions

s

n(zip) = B @O+ +
¢zip) ="+ D+ (7)

8.2, Expansion of the four bending solutions
In the sume way as in Section 5.1, the four bending solutions can finally be expressed
as:

3
= Y Gy ZWEip) U= 102309), %)

p=0

where the slowly varying coeflicients are given in terms of the same notation, m(z; g, as
in expression (27), because both satisfy the same differential cquations,

6. DETERMINATION OF THE SLOWLY VARYING COEFFICIENTS

Once the general expansions are known, finding the solutions of the orginal eqns (1)
become the determination of the slowly varying cocllicients in their expansions, Because off
the restriction of the accuracy of the theory of thin shells, determination of the primary
term in the asymptotic expansions (26), (28) and (27) is suflicient.

6.1, The singular memhrane solution
From the general expunsion {26}, the singular membrane solution of eqns (1) is assumed
to be

Ul p) = e () + 2, AC 0+ pff A D+ 477 A2+ 03 A )+ 400,450 4)

A}

r(Cip) = () 2+l A l)+;r~,~1.%’(;;2)+;1\‘¢)’_\.#(§;3)+;z*‘(l_‘.%’(;;4)

2

ws(C o g0) = ph o (8)+ o A 0)+ 1 s R 1)+ 177 RS L 2) 40000, 8 3) + 10, A2 4)
(29)

where the slowly varying coetlicients ¢,. 2,, f,.. 7, and 0, (/ = 1,2, 3) arc all functions of the
original variable s,

Substituting (29) into eqns (1), equating the cocflicients of #(J:p) (p =0, +1, +2)
and constant terms at both sides to cach other, we obtain 18 ordinary differential equations
and 18 slowly varying cocflicicnts as unknown. Solving the eguations for these coeflicients
yields

1|=1330

ay(s) = Do[BE)] o' (5)] V7, (30)

where D, is a constant that remains to be determined later.
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It is not necessary to find the other 15 slowly varving coefficients. If we re-expand the
singular membrane solution in terms of A(J:p) (p = —3. =2, —1.0. 1) instead of A(_:p)
(p=0.=1.£2)as before. and note that the terms containing #(J:p) (p= 3. =2. — 1)
are small quantities of higher order than the error in the theory of thin shells, we obtain

-

us = W+ 97 +3i9°0 + R 0D+ pA( V(B +o7, + 1070, +10%0))

Us = {407+ 3070+ Ho 0+ u( D(fr+oy.+ 1070+ Lp'0,)

ws = (@ + 07+ 3070+ R 00+ DB+ 07+ o 0+ 40700 + 2, 4(:0)
(3D

which indicates that the 18 slowly varying coefficients, except 2. 2, and x.. appear only as

six different combinations. Through a lengthy and skillful calculation, it is possible to verify

that the combinations f,+ @y, + L9070, + Le'0, (i = 1.2.3) satisfy the membrane equations.

On the other hand. as can be seen, the combinations are analytic. Thus, between the

combinations and the three regular membrane solutions, the following relations exist

By +lod +le'0, = Ed + Ead" + E
Bodpr+toid. +lep'0 = E e+ EaY + Eay”

B+ lpo+lo0 = Ew+EnY £ Ent": (32)

where £, £ and £ are constants that should be determined.
We introduce the notation to denote the other three combinations of cocflicients as

follows
Po=d¢,+oy, + _-}(plo} + %,l,(p‘()l
Qs =dr+@r +ipd + g0,
Ri=¢+@y+ip o+ o' (33

It can also be vertfied that the three combinations satisfy the membrane equations in such
a manner that

Po—(E "+ Ed + Ed"yIn o
M+ (L —v)Q Qs —(E 0"+ Ex" + £ In g
Ry—(E W+ Eany+ Eo) Ingp -y

It

On the other hand. due to the singularity of the column vector at ¢ = ) we immediately
conclude that the column vector must contain a component of the singular membrane
solution (24", ', w{""), and have the general form

Po—(E "+ E"+ E ™ Ing = Ful + Gl + Gy + G
Os—(EcW+ Et"+ Ex")In @ = Ft'{" + G e + G + Gy
Ri—(EpwP+ Eae? + Egw') Inp—250 ' = Fw'" + G wi + Gont" + Gy (34)

where F, G,. G, and G, arc the constants to be determined.
Substituting formulae (32). (33) and (34) into egns (31), we obtain

F=pun '

Thus, eqns (34) can be rewritten as
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U = pPs— (G, +E, In @ — p(G,+ E; In @)u” — (G + E; In ol
P = uQs— (G + E In o) —p(G: + Ex ln o) — (G5 + Ex In @)y

w = uR, = (G, + E, In @' = (G, + E; In o — (G5 + Ey In @)w

K -1

e -
(35)

Equations (35) should be valid at the turning point due to their uniform validity.
Namely. provided we expand eqns (35) asymptotically at ¢ = 0, the result should coincide
with the singular solution of the membrane equation in the power series at the neigh-
bourhood of the turning point s = 5, : which is shown as:

=pP(s)+d In |s—5,]
Y = ¢ M)+ In|s—s,|

w® = M)+ wi® In s ~s, 1+ (s—s,) "
Finally. we obtain

E‘=-3(-" ::E;=O

(i {31

ulPs=p Qs =4\, Ry =15

and

Dy = —p B D) o (s Y

I

which appear in formula (30).
Thus, the singular membrane solution (31) is finally found as

uy (S p) = pi"(s) = A ()
r5(C ) = g () = A DR (s)
ws($sp) = r{0(s) = A D () + 2, ()H (S 0), (36)

XJ(A') = —l '][(P'(S*)] “:[(ﬂ'(-\')l \z[lﬁ(f)]

6.2. The four bending solutions
According to the general expansion (24), the bending solutions can be assumed as

() = 0 ()2 0)+uf (D2 D+
i) = (DLW 0+ uf ()L D+ 17D X 2D+ -
WG = 0y ()2 0+ - (h=1,2,3.4). 37

Only the cocfficients in the terms shown should be found, due to the limitation of the
accuracy of the lincar theory of thin shells.

Substituting formula (37) into eqns (1), and equating the coefficients of 2,({; p) at
both sides to each other, gave S ordinary differential equations and 15 slowly varying
coefficients x,, f§,. ... as the unknowns, which are the same as the equations in the previous
section (6.1). From these equations, it is easy to obtain



1324 R 1 Zuase and W ZHanG

11=1::/;:E()

2(5) = C[B)] o]

8 - . ..
Bils) = uc,(ﬁ; + 1;:)[3(;)1' Up(s)] C
. mo (U 2Ry
i :(5) = Cn B(S) (R; Rz“)[B(é)} [(17 (S)] .

where C, is a constant,

By using the uniform validity of solutions (37). i.e. in both the subintervals s, < s, and
s; 2 5, which are far away from the turning point s, . these solutions should be identically
equal to those which are valid only in the two subintervals, respectively. {The latter two
soluttons correspond to the cases of low frequency and high frequency. respectively, as
mentioned by Zhang, 1988). The constant €, is determined as

Co =gt "[Bls )] o' s )]
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APPENDIX

Al ssvmprotic representations of X (0 p)
We start from (10} and find the reprosentations of £ 00 phus J— £ 7 inadvance,
{tis not difficult to obtata their four saddle pomnts in the s-plane as follows:

A D e |23 ), (A1)

I’ln! o >

and the steepest descent paths as shown in Fig. AL The integrals with the steepest descent paths as their contours
of integration have the following asymptotic representations:

. i
1 | b e
. Pexp =t de ~ o A D) . (A
h.m i 4“ _’ exp sy i 2 ¢ = KA
(o= 123 d0p =0, 80 2200
where
o= i sy Ml s bt Ly R

The first two terms of O are
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{<0

Fig. Al. Four saddle points and the steepest descent paths in the t-plane.

=1 cyp =§+p(p+4) (A3)

and the remainder are not used since the addends they appear in [see eqn (A2} are beyond the accuracy of the
theory of thin shells.

The contours of integration as given in {10} can be deformed into the steepest descent paths. Then F(0ip)
as ¢ = + 2 are denoted, in terms of ¢,( p). as

F "‘f’l“!-(‘b:'*"f’\'“/)

F R

Fol < ] = R {Ad)
1"1 ‘1’4

F, ‘[’t“g(‘}".‘ K

FAS o pyas§ - — o« are found to be

F, -,

F, bt N+~ #)

Fol < | ~ld+ ) . {AS)
Fy byt M+ -7

Fx —(bi

where # = #({:p)is the third generalized related tunction as defined before.

Clearly the values of 1, ¢, and F, are probably all complex although the variable J is real. To circumvent
this disudvantage, the tirst gencralized relted function 27,({;p) (h = 1,2,3,4) is defined as the following com-
binations of F{{:pyth = 1,2,....5):

I, = —if,

Ti=—F,+F,

Ty=i{~F,+F,)

Ti=ilF +F)+(l-i) 7, (A6)

Thus. after some manipulation, the asymptotic representations of 2 p) as { = + % are finally found [as
given in egns (1)),

A2, Representations of (. p)

It can be seen from the definition of #((:p) that #{{:p) = 0if p < 0; otherwisc it is a polynomial in { of
degree p~ | which, by the residuc theorem, is the coctlicient of ¢” ' in the expansion of exp {{t— y*}. The first
few of these polynomials are given in eqn (17).
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ro(§ip), k=2

A3. dAsymplotic representations of A p)
First we consider, for unrestricted (complex) values of p, the following integrals

H‘.)
r;.(C:/’)=,)ﬂ_J rrexp i —utide (k=1.2.....5. (AT)

‘i

We observe that r({:p) is independent of the values of &0 In tuct, for any value of & =1,2,..., S. the
connexion formula

n@ipy = N F(py (ko= 12000, 5) exists,

The pattern for k& = 2 is sketched in Fig, A2, Thus, to emphasize this independence, subscript & will be ommitted.
Using a formula given by Erdelyi ez al. (1953, p. 14), we obtain

. (-1y
. -~ \ o S -4 . \x
r(eip) = ,,’5”); (pell) (A8)

If P is an integer, it is interesting 1o note that
ASip)E A (p=0,210 8200 (A9)

Thus, if pis an integer, we conclude that #(J:p) = 0 for all p < 0 otherwise the series in (AS) ternunates, and

lip - 11n] (~ 1y

JEP = S Tsa

P -

(p=12...

-0

which is just formula (106).

Differentiation of (A7) with respect to p (peC) gives the seccond generalized related function A(S:p) =
A, (L p). as defined before. Obversely, #({; p) is also indcpendent of k. Thus, by differentiating both sides of
(A%) and letting p take an integer value again, the asymptotic representations of A#(J5p) can be found, when
{— + . as follows:

. S(=0 N Sn—p)t
AGp)~ Y '51,',3""'“"/'" S p=0-L -2
LR N

and

. .. .. WD (Y (p=Sn~1) & o
Alp)~ -(nl+NFEC P+ 2:0 S T (o sm ARk D)
(=07 "Cn=pley

!

+ by (p="12..)

Al L0

where ¢ = 0.5772156649 ... is Euler’s constant. )
Ouly A(J: —1). A(Z:0) und A(S 1) are uselul in our subject, and their asymptotic representations have been
given in Section 3.



